

DATASHEET | APRIL 2024

Applications

- FMCW LiDAR
- Conherent Communications
- Free Space Optics
- Test & Measurement

Features

- 19 dBm Optical Output Power
- OC-48 Pinout Compatible
- Telecordia Technoligies® GR-468
 Compliant
- PM Fiber
- -10 °C to + 65 °C Operating Temperature Range
- Monitor Photodiode
- RoHS

SENSING & COHERENT COMMUNICATIONS

Ortel's 1693 O-Band DFB laser module is an ideal source laser for a variety of sensing, communication and test & measurement applications. It is characterized for use as a CW coherent optical source laser for FMCW LiDAR and coherent communications. The high power and narrow line width characteristics of the laser also make it an ideal choice as an O-band Coherent source in fiberoptic or free space communications links. The 1693 is DC-coupled with a built-in TEC, thermistor, and monitor photodiode. The device is mounted in a 14-pin, OC-48 pinout compatible hermetic butterfly package with the optical isolator mounted on the TEC. The 1693 incorporates a high efficiency coupling scheme to deliver 80 mW of CW optical power. The laser module has multiple connector options, including no connector.

Performance Highlights

Parameter	Min	Тур	Max	Units
Operating Case Temperature	-10	25	+65	°C
Wavelength	O-Band contact Ortel for availability nn			nm
Optical Output Power	18.3	19	-	dBm
Threshold Current	-	-	20	mA
Operating Current	-	-	400	mA
Linewidth ¹	-	50	100	KHz
Optical Isolation	-	50	-	dB
Maximum Laser Output Power (Eye Safety)	-	-	27	dBm
SMSR ²	50		-	dB
Polarization Extinction Ratio (PMF pigtail)	17	-	-	dB
Optical Return Loss	40	-	-	dB

 Linewidth defined as Pi times the single-sided spectral density of the frequency noise at 100 KHz measurement frequency. Linewidth to be achieved with a laser driver with current noise density of 500 pA/\/Hz.

2. @ operating current

DATASHEET | APRIL 2024

SENSING & COHERENT COMMUNICATIONS

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter	Symbol	Condition	Min	Max	Units
Operating Case Temperature	T _{OP}	continuous	-10	+65	°C
Reduced Performance Operating Case Temperature	T _{ROP}	continuous	-15	+70	°C
Storage and Non-Operating Temperature	T _{STG}	continuous	-40	+85	°C
Laser Forward dc Current	-	continuous	-	750	mA
Photodiode Reverse Voltage	V _{R,MPD}	continuous	-	10	V
Laser Reverse Voltage	-	continuous	-	2	V
TEC Current	I _{TEC}	continuous	-	1.7	А
Maximum Laser Output Power	P _{max}	Continuous	-	27	dBm
ESD	-	HBM: R = 1500 Ω, C = 100 pF	-500	500	V
Relative Humidity	RH	Non condensing			

Electrical/Optical Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Operating Case Temperature	Tc	-	-10	25	65	°C
Optical Output Power	Po	$T = T_{OP}, I_F = I_{OP}$	18.3	19	-	dBm
Threshold Current	I _{TH}		-		20	mA
Operating Current	I _{OP}	T=T _{OP} , @ 18.3 dBm	-	-	400	mA
Operating Laser Temperature	T _{OP}		-	25	-	°C
Laser Bias Forward Voltage	V _{OP}	I _F = I _{OP}	-	-	2.5	V
Wavelength	λ _{OP}	$T = T_{OP}, I_F = I_{OP}$	O-Band		nm	
Linewidth ¹	Δν	$T = T_{OP}, I_F = I_{OP}$	-	-	100	KHz
Optical Isolation	ISO	-	-	50	-	dB
Optical Return Loss	ORL	-	40	-	-	dB
Sidemode Suppression Ratio	SMSR	$T = T_{OP}, I_F = I_{OP}$	50	-	-	dB
Polarization Extinction Ratio	PER	$I_{\rm F} = I_{\rm OP}$	17	-	-	dB
Bias Current with 5 GHz Wavelength Tuning	Ι _τ	P-P bias current modulation amplitude of triangle wave @100KHz, T = T_{OP} , $I_F = I_{OP}$	15	-	50	mA
Monitor PD Current	I _{MPD}	$I_F = I_{OP}$, $V_{MPD} = -5$ V	100	-	2500	μA
Monitor PD Dark Current	ID	$I_{OP} = 0 \text{ mA}$, $V_{MPD} = -5 \text{ V}$	-	-	0.2	μA
Thermistor Resistance ²	R _{TH}	T _{OP} = 25 °C	9.5	10.0	10.5	KΩ
Thermistor Temp. Coefficients	ТСтн	T _{OP} = 25 °C	-	-4.4	-	%/°C
TEC Current	I _{TEC}	-10°C < T _C < +65°C	-1.0	-	+1.5	A
TEC Voltage	V _{TEC}	-10°C < T _C < +65°C	-2.0	-	+3.0	V
Fiber pigtail ³ length	L _f		0.5			m

1. Linewidth defined as Pi times the single-sided spectral density of the frequency noise at 100 KHz measurement frequency. Linewidth to be achieved with a laser driver with current noise density of 500 pA/\Hz.

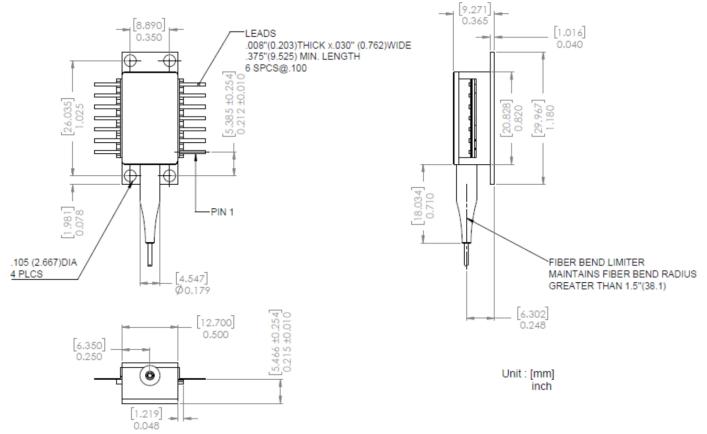
Thermistor temperature-resistance formula: 1/T = A + B*Ln(R) + C*(Ln(R))³ where T is temperature in Kelvin, R is resistance in Ohm, A=1.129x10⁻³, B=2.341x10⁻⁴, C=8.775x10⁻⁸.

3. PANDA 1310 nm polarization maintaining fiber or compatible, 400 µm buffer.

© 2024 ORTEL Corporation | REV 2024.04

sales@ortel.com | www.ortel.com

Information contained herein is deemed reliable and accurate as of the issue date. ORTEL reserves the right to change the design or specification at any time without notice. ORTEL is a registered trademark of ORTEL Corporation in the U.S. and other countries.


Model 1693 O-Band High Power CW Source

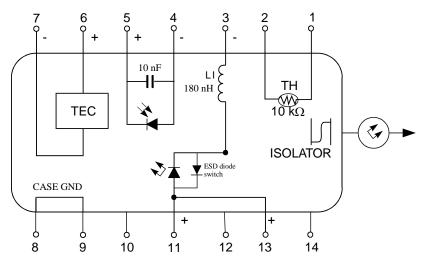
SENSING & COHERENT COMMUNICATIONS

DATASHEET | APRIL 2024

Outline Drawing

Note

[1] The global common tolerance for measurements is 0.005"


[2] The module base plane material is Cu-W with min. 0.7µm gold finish. Base flatness specification = 0.003"

SENSING & COHERENT COMMUNICATIONS

DATASHEET | APRIL 2024

Electrical Schematics

Pin Assignments

Pin	Description		
1	Thermistor		
2	Thermistor		
3	Laser Cathode (-)		
4	MPD Anode (-)		
5	MPD Cathode (+)		
6	Thermo-electric Cooler (+)		
7	Thermo-electric Cooler (-)		
8	Case Ground		
9	Case Ground		
10	NC		
11	Laser Anode (+)		
12	NC		
13	Laser Anode (+)		
14	NC		

© 2024 ORTEL Corporation | REV 2024.04

sales@ortel.com | www.ortel.com

DATASHEET | APRIL 2024

SENSING & COHERENT COMMUNICATIONS

Ordering Code Definitions

1693A-080-001-FA-PM

O-Band Laser Module, 19 dBm, FC/APC, PM fiber

Other connector options and DWDM wavelengths possible – contact your Ortel sales representatives to learn more.

Product Label

Product model number, serial number and manufacturing date (month and year) are on both the module and package box. The serial number starts with three letters, and then followed by numbers and letters. For example: BHG1234.